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ABSTRACT. In the method proposed characteristic surfaces
are constructed and in place of trigonometric representa-
tion of parameters by one variable, a finite differential
approximation along a certain.vector lying in the charac-
teristic surface is used. Derived information is ordered
according to one of the variables distributed along
meridional planes, using a cylindrical system of coordi-
nates. In comparison with data of other methods using
the results of calculation of supersonic flow on a spheri-
cally truncated cone at an angle by initial data on the
characteristic surface shows that.the new method more
accurately reflects the prevalent physical particulars.
It can also be adopted to extrapolate calculation from
the initial data or to obtain the initial data for

other methods on non-characteristic surfaces, and pro-
vides a precise physical flow picture.

Of the quantitative methods in use which are based on the use of character- /1413¢
istics, one can sort out two groups. The first group is made up of essentially
characteristic methods, their characteristic surfaces are constructed in the
solution process [1, 2]. The so-called tetrahedral or prismatic diagrams can
be allotted to this group. In the tetrahedral diagram, three known points
are used to obtain a fourth. This diagram is developed in [1] and practically
applied in [2]. Unfortunately, in [2] the shock wave is calculated incorrectly
(see [3]). The use of three known points in an elementary cell to obtain a
fourth allows a wide latitude in the selection of the diagram. The idea of a

prismatic diagram can be found for example, in [4, 5].

Here we propose a direct method of characteristics, which is a direct ~
generalization of a two-dimensional method [6]. Derived information is ordered
according to one of the variables (distributed in meridional planes), which

distinguishes the given method from that proposed in [1, 2]. This diagram

*Numbers in the margin indicate pagination in the foreign text.



differs from the one used in [7] by being direct, i.e., in the calculation

process characteristic surfaces are constructed and in place of trigonometric
representation of parameters by one variable, a finite differential approxi- /1414
mation along a certain vector lying in the characteristic surface is used.

Generally speaking, the diagram is implicit in that direction.

For unknown functions we will examine pressure p, enthalpy i and two
corners of velocity vector V in a cylindrical system of coordinates x, T, ¢
(V=V[(Q1~+ nz)(l + Cz)]'l/z{l, n{r;/ (1 + nz(}). 'Thé unknown functions are
relative to input parameters (p is relative to pwvwz, i--k V&Z), linear
dimensions to a specific dimension of a body (for example, to the radius of
a sphere); x is read off from the forward point of the body; angle ¢ is read
off.so that the input flow velocity vector v lies in the plane ¢ = 0. We have
V= {cos.a, --sin a cos ¢, sin d sin ¢} where o is.the angle of incidence.

The initial system of equations establishing the ideal flow of gas in these
variables is given in [8]. We will convert this system to work oﬁt a

numerical diagram.

Figure 1. Figure 2.

Suppose we are given continuous curve ' of the three-dimensional type with
tangential unit vector b (Figure 1). Through curve I' we direct characteristic
plane P. We direct unit vector a, tangent to surface P and lying in plane
¢ = const, i.e., a¢ = 0. We resolve a and b into tangent vectors t(t) and

o(t) of surface P, where t(t) is directed along the bicharacteristics, o(t) is



perpendicular to t(t) and to the characteristic normal n(t) (see [9], and

t € [0, 2n]. Evidently the following correlations take place,

a=vcos it} osinp, b = tsinv-| ccosv, an(y) =0, bn(s) = 0. (1)

From the last correlation we find parameter T. Note that this equation
has two roots in the interval t € [0, 2] for wave planes and one for the
flow plane. From the third equation we find the vector a = {sin A, sin A; O}.
Then corners v and u are determined by correlations cgs p = ar, sin u = ao,
cos v = bo, sin v = btr. Then the equations common to the wave planes can be

written in the form
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Here s is the coordinate (length of the arc) along vector a, along vector b, /1415
A= p/sz, Z=pi/p, P=1np, I = 1n i, tan e = (M2 - 1)“1/2, M is the local
- Mach number. These equations are also the initial ones for setting up the

numerical diagram.

Figure 4

Figure 3

Now we have the probiem of numerical solution of the equations for the
gas dynamics in the supersonic region 1imited by the previously unknown
shock wave and the body according to the initial data on a certain characteris-
tic surface ABCDLK (Figure 2).

We will construct a numerical diagram which is a direct inference of the
two dimensional characteristic [6]. The products along vector b are replaced
with finite differential ratios. A second (or first) family calculating lattice
CL is constructed, and step by step the solution is found in the region bounded
by unknown shock wave CE and body surface LW. 1In each plane ¢ = const we will

have a picture as shown in Figure 3. The surfaces fixed by CL and LE are
characteristic,

Now examine the elementary core of differential lattice (Figure 4).
Equations (2), taken for two values of parameter t, are described along lines
1-5 and 2-5, while equations (3) are along 0-5. These curves are the essence
of the intersection of the corresponding characteristic surfaces with planes

¢ = const, and have equations which are written in differential form



BTN o tga i=0,1,2, (49
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Ty — I

where tan X is defined by the third equation of (1).

Now we write equations (2) and (3) in the differential form:

Coins + Coils + Co'Py = %, =0, 1, 2,
(5)
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Subscript '"5'" relates to the parameter in lattice point 5; the subscripts "-"

and "+" indicate that the functions belong to the preceding or subsequent planes
respectively with respect to the subject plane ¢ = ¢0. Qualitatively, the values
ft take average values of the corresponding parameters in points i and 5 in
planesf¢0 = A¢p. Coefficients CJ.i and DjfL in equation (5) énd tan ki in equation
(4) are computed according to the average values of the parameter in points i.

: _Z;_ﬂ |

Fo Vi Let the initial data be known for

characteristic surfaces of the second
Q079 X8

A
\f&—'z. ///ﬁ family. Then we begin the calculation
h 0.06% ‘ - of each layer from the shock-wave point.
*y//,é x/////é If the initial data are known for the

| a5t pew/z g . :
_—5—% characteristics of the first family,
© 4oy ~///P then calculation begins with the point
S N S ' } for the body. The shock wave is sought
i 20 2% é& iz ii ép r in the form f = R (x, ¢).
Figure 5. | - Calculation of points in the shock

wave. Take the intersection normal to the shock wave n = (1 + q2 + wz)_l/2

“1/2 49, q, 0}, b = M, b,

{-q, 1, w$ and two tangent unit vectors a = (1 + q2) T

b¢}, where q = Rx’ w = R¢/R, b is the known vector.



Corresponding to [3], using (5) where i = 1 and the condition nb = 0, we

obtain the equation for determining qg: B
Ciin(gs) +- C2'5(gs) + Co'P(gs) — 21 = 0. (6)

Carrying the first family characteristic out to intersection with the
" shock wave, we find the coordinates of point 5. Then, solving equation (6), we
find g and from correlation nb = 0, we determine wg, we further calculate in
the first approximations of parameters Ngs Zgs PS’ and IS the points of the shock
wave for all ¢ by known formulas (see [8]). Then for a zero approximation we take
the parameters at the preceding layer. Then we repeat the calculations using

neutralized parameters.

Calculating points within the flow. From points 1 and 2 (Figure 4) we Llﬁlzl
carry out the characteristics (in the first approkimation for parameters in
points 1, 2) to intersection at point 5. Solving system (4), we determine
5° CS’ PS’ IS' Then the initial values for the flow line is
taken according to the neutralized parameters in points 1 and 2, and then,

the parameters n

" carrying the flow line backwards from point 5, we find point 0 and the
parameters in it of the linear interpolation between points 1 and 2. After
calculating all points 5 in line N (Figure 4) for all ¢ in the Ffirst approxi-

_mation, we repeat the calculating process, this time calculating the coefficients

by the center values of the parameters in points i and 5 (i =0, 1, and 2).

Calculating the points on the body. Let the body be given by equation r =

= rT(x, ¢). Then the condition of nonincursion on the body can be written in the

form !
M5 = ras’ Y1+ net)J%
: "
The method of calculation is analoguous to the preceding one, but in place of /1418

correlation along line 1-5 one must use. the nonincursion condition of the body.

Calculation was made according to the algorithm described above for
the supersonic region between the shock wave and the body from a certain

initial characteristic surface of the second family.

To verify the method we calculated the flow around a cone with a half
angle of ¢ = 10° and with spherical truncated at an angle of incidence of a =

= 5°, while M = 6. Calculations were made for 25 points in the characteristic
Too P



and 11 points on the angular coordinate. Initial data were taken from the case
of flow around a sphere [10], and then the system of coordinates was rotated to
angle a. Figure 5 illustrates the pressure profile transverse to the shock
layer in cross-section x = 5.8264 for three planes ¢ = 0, /2, m. Here is
clearly seen the break in the product along the characteristic surface going
from the break line in the curved contour of the body. Comparison was made with
the lattice-characteristic method, wherein the data from [9] are indicated by
"er and from [11] by "x'".

Let us look at the results of calculation of flow around 4 round cylinder
‘trupcated along an ellipsoid rotation with a semiaxial ratio of & = b/a = 1.5
for o = 5° and 10° and M_ = 10. Initial data for this case are taken from
calculations of the subsonic and transsonic region given in [12]. Linear

- dimensions relate to the greater semiaxis b.

To extend the calculation into the supersonic region we took 17 points
on the characteristic and 11 points on the angular coordinate. Figure 6 shows
the flow picture in the plane of symmetry (a = 10°). Figure 7 gives the dis-
tribution of pressure along the surface of the cylinder in three planes
¢ =0, /2, 7 (a = 5°).

. | By this method we have pro-

posed and in practice realized

a new direct diagram of charac-

teristics for calculation of
three-dimensional gas flow. In

constructing characteristic surfaces

gﬁ%; ’ ' : z Dpoints are ordered along one of the
¥ Y
0\ a5 A €1 z i; ' } varisbles (distributed on the
2;_ meridional planes). Comparison of

o] the results of calculating super-

sonic flow on a spherically trun-

cated cone at an angle of incidence

by initial data on the characteristic

surface with the data of other

Figure 6. methods showed that the method



suggested is a more accurate
reflection of the prevalent physi-

cal particulars.

a.0ss It is useful to adépt the

method given if it is necessary to

2z =7/2 0047

extrapolate calculation from

arb 2028 the initial data on the character-

istic surface or to obtain the

! ! 0.015¢
vl

Y rra Y initial data for other methods on

non-characteristic surfaces, and
Figure 7. also if one wishes to get a pre-

cise physical flow picture.

In conclusion the authors express their gratitude to M. M. Golomazov for

the permission to use the calculations of flow on the ellipsoid of rotation.

December 12, 1968
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